×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18010v1 Announce Type: cross
Abstract: Deconfined quark matter at asymptotically high densities is weakly coupled, due to the asymptotic freedom of Quantum Chromodynamics. In this weak-coupling regime, bulk thermodynamic properties of quark matter, assuming a trivial ground state, are currently known to partial next-to-next-to-next-to-leading order. However, the ground state at high densities is expected to be a color superconductor, in which the excitation spectrum of (at least some) quarks exhibit a gap with a non-perturbative dependence on the strong coupling. In this work, we calculate the thermodynamic properties of color-superconducting quark matter at high densities and zero temperature at next-to-leading order (NLO) in the coupling in the presence of a finite gap. We work in the limit of two massless quark flavors, which corresponds to deconfined symmetric nuclear matter, and further assume that the gap is small compared to the quark chemical potential. In these limits, we find that the NLO corrections to the pressure and speed of sound are comparable in size to the leading-order effects of the gap, and further increase both quantities above their values for non-superconducting quark matter. We also provide a parameterization of the NLO speed of sound to guide phenomenology in the high-density region, and we furthermore comment on whether our findings should be expected to extend to the case of three-flavor quark matter of relevance to neutron stars.

Click here to read this post out
ID: 807219; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 14
CC:
No creative common's license
Comments: