×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18740v1 Announce Type: cross
Abstract: The aim of this study is to investigate the effect of dark matter (DM) on $f$-mode oscillations in DM admixed neutron stars (NSs). We consider hadronic matter modeled by the relativistic mean field model and the DM model based on the neutron decay anomaly. We study the non-radial $f$-mode oscillations for such DM admixed NS in a full general relativistic framework. We investigate the impact of DM, DM self-interaction, and DM fraction on the $f$-mode characteristics. We derive relations encoding the effect of DM on $f$-mode parameters. We then perform a systematic study by varying all the model parameters within their known uncertainty range and obtain a universal relation for the DM fraction based on the total mass of the star and DM self-interaction strength. We also perform a correlation study among model parameters and NS observables, in particular, $f$-mode parameters. Finally, we check the $f$-mode universal relations (URs) for the case of DM admixed NSs and demonstrate the existence of a degeneracy between purely hadronic NSs and DM admixed NSs.

Click here to read this post out
ID: 807224; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: