×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18090v1 Announce Type: new
Abstract: Descriptors are physically-inspired schemes for representing atomistic systems that play a central role in the construction of models of potential energy surfaces. Although physical intuition can be flexibly encoded into descriptor schemes, they are generally ultimately guided only by the spatial or topological arrangement of atoms in the system. Here, we propose a novel approach for the optimization of descriptors based on encoding information about geodesic distances along potential energy manifolds into the hyperparameters of commonly used descriptor schemes. To accomplish this, we combine two ideas: (1) a differential-geometric approach for the fast estimation of approximate geodesic distances; and (2) an information-theoretic evaluation metric - information imbalance - for measuring the shared information between two distance measures. Using the MD22 datasets of ethanol, malonaldehyde, and aspirin, we first show that Euclidean (in Cartesian coordinates) and geodesic distances are inequivalent distance measures, indicating the need for updated ground-truth distance measures that go beyond the Euclidean distance. We then utilize a Bayesian optimization framework to show that descriptors (in this case, atom-centered symmetry functions) can be optimized to maximally express a certain type of distance information, such as Euclidean or geodesic information. We also show that modifying the Bayesian optimization algorithm to minimize a combined Euclidean+geodesic objective function can yield descriptors that not only express both Euclidean and geodesic distance information simultaneously, but in fact resolve substantial disagreements between descriptors optimized to encode only one type of distance measure. We discuss the relevance of our approach to the design of more physically rich and informative descriptors that can encode useful, alternative information about molecular systems.

Click here to read this post out
ID: 807238; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 25
CC:
No creative common's license
Comments: