×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18657v1 Announce Type: new
Abstract: The emergence of a vast repository of van der Waals (vdW) materials supporting polaritons - light coupled to matter excitations - offers a plethora of different possibilities to tailor electromagnetic waves at the subwavelength-scale. In particular, the development of twistoptics - the study of the optical properties of twisted stacks of vdW materials - allows the directional propagation of phonon polaritons (PhPs) along a single spatial direction, which has been coined as canalization. Here we demonstrate a complementary type of nanoscale unidirectional propagation that naturally emerges thanks to twistoptics: unidirectional ray polaritons (URPs). This natural phenomenon arises in two types of twisted hyperbolic stacks: homostructures of $\alpha$-MoO$_3$ and heterostructures of $\alpha$-MoO$_3$ and $\beta$-Ga$_2$O$_3$, each with very different thicknesses of its constituents. URPs are characterized by the absence of diffraction and the presence of a single phase of the propagating field. Importantly, we demonstrate that this ray behavior can be tuned by means of both relative twist angle and illumination frequency variations. Additionally, an unprecedented "pinwheel-like" propagation emerges at specific twist angles of the homostructure. We show that URPs emerge due to the twist between asymmetrically stacked biaxial slabs, while the shear effect in monoclinic $\beta$-Ga$_2$O$_3$ is of minor importance. Our findings demonstrate a natural way to excite unidirectional ray-like PhPs and offer a unique platform for controlling the propagation of PhPs at the nanoscale with many potential applications like nanoimaging, (bio)-sensing or polaritonic thermal management.

Click here to read this post out
ID: 807269; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 21
CC:
No creative common's license
Comments: