×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18054v1 Announce Type: cross
Abstract: Gibbs sampling repeatedly samples from the conditional distribution of one variable, x_i, given other variables, either choosing i randomly, or updating sequentially using some systematic or random order. When x_i is discrete, a Gibbs sampling update may choose a new value that is the same as the old value. A theorem of Peskun indicates that, when i is chosen randomly, a reversible method that reduces the probability of such self transitions, while increasing the probabilities of transitioning to each of the other values, will decrease the asymptotic variance of estimates. This has inspired two modified Gibbs sampling methods, originally due to Frigessi, et al and to Liu, though these do not always reduce self transitions to the minimum possible. Methods that do reduce the probability of self transitions to the minimum, but do not satisfy the conditions of Peskun's theorem, have also been devised, by Suwa and Todo. I review past methods, and introduce a broader class of reversible methods, based on what I call "antithetic modification", which also reduce asymptotic variance compared to Gibbs sampling, even when not satisfying the conditions of Peskun's theorem. A modification of one method in this class reduces self transitions to the minimum possible, while still always reducing asymptotic variance compared to Gibbs sampling. I introduce another new class of non-reversible methods based on slice sampling that can also minimize self transition probabilities. I provide explicit, efficient implementations of all these methods, and compare their performance in simulations of a 2D Potts model, a Bayesian mixture model, and a belief network with unobserved variables. The non-reversibility produced by sequential updating can be beneficial, but no consistent benefit is seen from the individual updates being done by a non-reversible method.

Click here to read this post out
ID: 807282; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: