×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2401.18080v2 Announce Type: replace-cross
Abstract: We show that strong bow shocks are turbulent and non-universal near the head, but asymptote to a universal steady, self-similar, and analytically solvable flow in the downstream. The turbulence is essentially 3D, and has been confirmed by a 3D simulation. The asymptotic behavior is confirmed with high resolution 2D and 3D simulations of a cold uniform wind encountering both a solid spherical obstacle and stellar wind. This solution is relevant in the context of: (i) probing the kinematic properties of observed high-velocity compact bodies -- e.g., runaway stars and/or supernova ejecta blobs -- flying through the interstellar medium; and (ii) constraining stellar bow shock luminosities invoked by some quasi-periodic eruption (QPE) models.

Click here to read this post out
ID: 807335; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 15
CC:
No creative common's license
Comments: