×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.16290v2 Announce Type: replace
Abstract: The two-dimensional track of an animal on a landscape has progressed over the past three decades from hourly to second-by-second recordings of locations. Track segmentation methods for analyzing the behavioral information in such relocation data has lagged somewhat behind, with scales of analysis currently at the sub-hourly to minute level. A new approach is needed to bring segmentation analysis down to a second-by-second level. Here, such an approach is presented that rests heavily on concepts from Shannon's Information Theory. In this paper, we first briefly review and update concepts relating to movement path segmentation. We then discuss how cluster analysis can be used to organize the smallest viable statistical movement elements (StaMEs), which are $\mu$ steps long, and to code the next level of movement elements called ``words'' that are $m \mu$ steps long. Centroids of these word clusters are identified as canonical activity modes (CAMs). Unlike current segmentation schemes, the approach presented here allows us to provide entropy measures for movement paths, compute the coding efficiencies of derived StaMEs and CAMs, and assess error rates in the allocation of strings of $m$ StaMEs to CAM types. In addition our approach allows us to employ the Jensen-Shannon divergence measure to assess and compare the best choices for the various parameters (number of steps in a StaME, number of StaME types, number of StaMEs in a word, number of CAM types), as well as the best clustering methods for generating segments that can then be used to interpret and predict sequences of higher order segments. The theory presented here provides another tool in our toolbox for dealing with the effects of global change on the movement and redistribution of animals across altered landscapes

Click here to read this post out
ID: 807351; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 19
CC:
No creative common's license
Comments: