×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18683v1 Announce Type: cross
Abstract: Long-range and anisotropic dipolar interactions induce complex order in quantum systems. It becomes particularly interesting in two-dimension (2D), where the superfluidity with quasi-long-range order emerges via Berezinskii-Kosterlitz-Thouless (BKT) mechanism, which still remains elusive with dipolar interactions. Here, we observe the BKT transition from a normal gas to the superfluid phase in a quasi-2D dipolar Bose gas of erbium atoms. Controlling the orientation of dipoles, we characterize the transition point by monitoring extended coherence and measuring the equation of state. This allows us to gain a systematic understanding of the BKT transition based on an effective short-range description of dipolar interaction in 2D. Additionally, we observe anisotropic density fluctuations and non-local effects in the superfluid regime, which establishes the dipolar nature of the 2D superfluid. Our results lay the ground for understanding the behavior of dipolar bosons in 2D and open up opportunities for examining complex orders in a dipolar superfluid.

Click here to read this post out
ID: 807408; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: