×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.15801v2 Announce Type: replace
Abstract: Quantum magnetometry uses quantum resources to measure magnetic fields with precision and accuracy that cannot be achieved by its classical counterparts. In this paper, we propose a scheme for quantum magnetometry using discrete-time quantum walk (DTQW) where multi-path interference plays a central role. The dynamics of a spin-half particle implementing DTQW on a one-dimensional lattice gets affected by magnetic fields, and the controlled dynamics of DTQW help in estimating the fields' strength. To gauge the effects of the field, we study the variance of the particle's position probability distribution (PD) and use it to determine the direction of the magnetic field maximally affecting the quantum walk. We then employ statistical tools like quantum Fisher information (QFI) and Fisher information (FI) of the particle's position and spin measurements to assess the system's sensitivity to the magnetic fields. We find that one can use the position and spin measurements to estimate the strengths of the magnetic fields. Calculations for an electron implementing quantum walk of fifty time steps show that the estimate had a root-mean-square error of the order of 0.1 picoTesla. Moreover, the sensitivity of our system can be tuned to measure any desired magnetic field. Our results indicate that the system can be used as a tool for optimal quantum magnetometry.

Click here to read this post out
ID: 807423; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: