×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.03353v3 Announce Type: replace-cross
Abstract: Systems displaying quantum topological order feature robust characteristics that are very attractive to quantum computing schemes. Topological quantum field theories have proven to be powerful in capturing the quintessential attributes of systems displaying topological order including, in particular, their anyon excitations. Here, we investigate systems that lie outside this common purview, and present a rich class of models exhibiting topological orders with distance-dependent interacting anyons. As we illustrate, in some instances, the gapped lowest-energy excitations are comprised of anyons that densely cover the entire system. This leads to behaviors not typically described by topological quantum field theories. We examine these models by performing dualities to systems displaying conventional (i.e., Landau) orders. Our approach enables a general method for mapping generic Landau-type theories to dual models with topological order of the same spatial dimension. The low-energy subspaces of our models can be made more resilient to thermal effects than those of surface codes.

Click here to read this post out
ID: 807437; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: