×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18039v1 Announce Type: new
Abstract: Causal inference on the average treatment effect (ATE) using non-probability samples, such as electronic health records (EHR), faces challenges from sample selection bias and high-dimensional covariates. This requires considering a selection model alongside treatment and outcome models that are typical ingredients in causal inference. This paper considers integrating large non-probability samples with external probability samples from a design survey, addressing moderately high-dimensional confounders and variables that influence selection. In contrast to the two-step approach that separates variable selection and debiased estimation, we propose a one-step plug-in doubly robust (DR) estimator of the ATE. We construct a novel penalized estimating equation by minimizing the squared asymptotic bias of the DR estimator. Our approach facilitates ATE inference in high-dimensional settings by ignoring the variability in estimating nuisance parameters, which is not guaranteed in conventional likelihood approaches with non-differentiable L1-type penalties. We provide a consistent variance estimator for the DR estimator. Simulation studies demonstrate the double robustness of our estimator under misspecification of either the outcome model or the selection and treatment models, as well as the validity of statistical inference under penalized estimation. We apply our method to integrate EHR data from the Michigan Genomics Initiative with an external probability sample.

Click here to read this post out
ID: 807445; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 28, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: