×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19304v1 Announce Type: new
Abstract: Rapidly growing datasets from stellar spectroscopic surveys are providing unprecedented opportunities to analyse the chemical evolution history of our Galaxy. However, spectral analysis requires accurate modelling of synthetic stellar spectra for late-type stars, for which the assumption of local thermodynamic equilibrium (LTE) has been shown to be insufficient in many cases. Errors associated with LTE can be particularly large for Ti I, which is susceptible to over-ionisation, particularly in metal-poor stars. The aims of this work are to study and quantify the 1D non-LTE effects on titanium abundances across the Hertzsprung-Russell diagram for a large sample of stars. A large grid of departure coefficients, $\beta_\nu$, were computed on standard MARCS model atmospheres. The grid extends from 3000K to 8000K in T$_{\mathrm{eff}}$, -0.5 to +5.5 dex in log(g), and -5.0 to +1.0 in [Fe/H], with non-LTE effects in this grid reaching up to 0.4 dex. This was used to compute abundance corrections that were subsequently applied to the LTE abundances of over 70,000 stars selected from the GALAH survey and additional metal-poor dwarfs. The non-LTE effects grow towards lower [Fe/H], lower log(g), and higher T$_{\mathrm{eff}}$, with a minimum and maximum $\Delta$A(Ti I) of 0.02 and 0.19 in the GALAH sample. For metal-poor giants, the non-LTE modelling reduces the average ionisation imbalance from -0.11 dex to -0.01 dex at [Fe/H] = -1.7, and the enhancement in titanium abundances from Ti I lines results in a [Ti/Fe] versus [Fe/H] trend that more closely resembles the behaviour of Ti II at low metallicities. Non-LTE effects on titanium abundances are significant. Neglecting them may alter our understanding of Galactic chemical evolution. We have made our grid of departure coefficients publicly available, with the caveat that the Ti abundances of metal-poor dwarfs need further study in 3D non-LTE.

Click here to read this post out
ID: 807789; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: