×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19357v1 Announce Type: new
Abstract: We present 6-GHz Very Large Array radio images of 70 gravitational lens systems at 300-mas resolution, in which the source is an optically-selected quasar, and nearly all of which have two lensed images. We find that about in half of the systems (40/70, with 33/70 secure), one or more lensed images are detected down to our detection limit of 20microJy/beam, similar to previous investigations and reinforcing the conclusion that typical optically-selected quasars have intrinsic GHz radio flux densities of a few microJy ($\sim10^{23}$WHz$^{-1}$) at redshifts of 1--2. In addition, for ten cases it is likely that the lensing galaxies are detected in the radio. Available detections of, and limits on the far-infrared luminosities from the literature, suggest that nearly all of the sample lie on the radio-FIR correlation typical of star-forming galaxies, and that their radio luminosities are at least compatible with the radio emission being produced by star formation processes. One object, WISE2329$-$1258, has an extra radio component that is not present in optical images, and is difficult to explain using simple lens models. In-band spectral indices, where these can be determined, are generally moderately steep and consistent with synchrotron processes either from star-formation/supernovae or AGN. Comparison of the A/B image flux ratios at radio and optical wavelengths suggests a 10 per cent level contribution from finite source effects or optical extinction to the optical flux ratios, together with sporadic larger discrepancies that are likely to be due to optical microlensing.

Click here to read this post out
ID: 807794; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 16
CC:
No creative common's license
Comments: