×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19151v1 Announce Type: new
Abstract: We examine the low-energy excitations of a dilute supersolid state of matter with a one-dimensional crystal structure. A hydrodynamic description is developed based on a Lagrangian, incorporating generalized elastic parameters derived from ground state calculations. The predictions of the hydrodynamic theory are validated against solutions of the Bogoliubov-de Gennes equations, by comparing the speeds of sound, density fluctuations, and phase fluctuations of the two gapless bands. Our results are presented for two distinct supersolid models: a dipolar Bose-Einstein condensate in an infinite tube and a dilute Bose gas of atoms with soft-core interactions. Characteristic energy scales are identified, highlighting that these two models approximately realize the bulk incompressible and rigid lattice supersolid limits.

Click here to read this post out
ID: 807858; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: