×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19628v1 Announce Type: new
Abstract: Anyons are two dimensional particles with fractional exchange statistics that emerge as elementary excitations of fractional quantum Hall phases. Experimentally, anyonic statistics manifest directly in the edge-state Fabry-P\'erot interferometer geometry, where the presence of $N_{qp}$ localized anyons in the interferometer bulk contributes a phase $N_{qp} \theta_a$ to the observed interference pattern, where $\theta_a$ is twice the statistical exchange phase. Here, we report a measurement of $\theta_a$ in a monolayer graphene Fabry-P\'erot interferometer at $\nu$ = 1/3. We find a preponderance of phase slips with magnitudes $\Delta \theta \approx 2 \pi / 3$, confirming the result of past experiments in GaAs quantum wells and consistent with expectations for the tunneling of Abelian anyons into the interferometer bulk. In contrast to prior work, however, single anyon tunneling events manifest as instantaneous and irreversible phase slips, indicative of quasiparticle equilibration times exceeding 20 minutes in some cases. We use the discrepancy between the quasiparticle equilibration rate and our measurement speed to vary the interferometer area and $N_{qp}$ independently, allowing us to precisely determine the interferometer phase and monitor the entry and exit of individual anyons to the interferometer loop in the time domain. Besides providing a replication of previous interferometric measurements sensitive to $\theta_a$ in GaAs, our results bring anyon dynamics into the experimental regime and suggest that the average `topological charge' of a mesoscopic quantum Hall device can be held constant over hour long timescales.

Click here to read this post out
ID: 807892; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: