×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18840v1 Announce Type: cross
Abstract: We propose a computational graph representation of high-order Feynman diagrams in Quantum Field Theory (QFT), applicable to any combination of spatial, temporal, momentum, and frequency domains. Utilizing the Dyson-Schwinger and parquet equations, our approach effectively organizes these diagrams into a fractal structure of tensor operations, significantly reducing computational redundancy. This approach not only streamlines the evaluation of complex diagrams but also facilitates an efficient implementation of the field-theoretic renormalization scheme, crucial for enhancing perturbative QFT calculations. Key to this advancement is the integration of Taylor-mode automatic differentiation, a key technique employed in machine learning packages to compute higher-order derivatives efficiently on computational graphs. To operationalize these concepts, we develop a Feynman diagram compiler that optimizes diagrams for various computational platforms, utilizing machine learning frameworks. Demonstrating this methodology's effectiveness, we apply it to the three-dimensional uniform electron gas problem, achieving unprecedented accuracy in calculating the quasiparticle effective mass at metal density. Our work demonstrates the synergy between QFT and machine learning, establishing a new avenue for applying AI techniques to complex quantum many-body problems.

Click here to read this post out
ID: 807894; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: