×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19408v1 Announce Type: cross
Abstract: Collision models describe the sequential interactions of a system with independent ancillas. Motivated by recent advances in neutral atom arrays, in this Letter we investigate a model where the ancillas are governed by a classical controller that allows them to queue up while they wait for their turn to interact with the system. The ancillas can undergo individual open dynamics while they wait, which may cause them to decohere. The system, which plays the role of the server in the queue, can also undergo its own open dynamics whenever it is idle. We first show that this framework generalizes existing approaches for quantum collision models, recovering the deterministic and stochastic formulations in the appropriate limits. Next, we show how the classical queueing dynamics introduces non-trivial effects in the quantum collisions, that can lead to different phases in the system-ancilla response. We illustrate the idea with a model of coherence transfer under noisy waiting dynamics.

Click here to read this post out
ID: 807913; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 15
CC:
No creative common's license
Comments: