×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2304.11152v2 Announce Type: replace
Abstract: We cast a nonzero-temperature analysis of the jamming transition into the framework of a scaling ansatz. We show that four distinct regimes for scaling exponents of thermodynamic derivatives of the free energy such as pressure, bulk and shear moduli, can be consolidated by introducing a universal scaling function with two branches. Both the original analysis and the scaling theory assume that the system always resides in a single basis in the energy landscape. The two branches are separated by a line $T^*(\Delta \phi)$ in the $T-\Delta \phi$ plane, where $\Delta \phi=\phi-\phi_c^\Lambda$ is the deviation of the packing fraction from its critical, jamming value, $\phi_c^\Lambda$, for that basin. The branch for $TT^*(\Delta \phi)$ reproduces exponents observed for thermal hard spheres. In contrast to the usual scenario for critical phenomena, the two branches are characterized by different exponents. We suggest that this unusual feature can be resolved by the existence of a dangerous irrelevant variable $u$, which can appear to modify exponents if the leading $u=0$ term is sufficiently small in the regime described by one of the two branches of the scaling function.

Click here to read this post out
ID: 807928; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 15
CC:
No creative common's license
Comments: