×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2307.16737v2 Announce Type: replace
Abstract: We present a non-standard Hubbard model applicable to arbitrary single-particle potential profiles and inter-particle interactions. Our approach involves a novel treatment of Wannier functions, free from the ambiguities of conventional methods and applicable to finite systems without periodicity constraints. To ensure the consistent evaluation of Wannier functions, we develop a perturbative approach, utilizing the barrier penetration coefficient as a perturbation parameter. With the newly defined Wannier functions as a basis, we derive the Hubbard Hamiltonian, revealing the emergence of density-induced and pair tunneling terms alongside standard contributions. Our investigation demonstrates that long-range inter-particle interactions can induce a novel mechanism for repulsive particle pairing. This mechanism relies on the effective suppression of single-particle tunneling due to density-induced tunneling. Contrary to expectations based on the standard Hubbard model, an increase in inter-particle interaction does not lead to an insulating state. Instead, our proposed mechanism implies the coherent motion of correlated electron pairs, similar to bound states within a multi-well system, resistant to decay from single-electron tunneling transitions. These findings carry significant implications for various phenomena, including the formation of flat bands, the emergence of superconductivity in twisted bilayer graphene, and the possibility of a novel metal-insulator transition.

Click here to read this post out
ID: 807932; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 14
CC:
No creative common's license
Comments: