×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2309.02316v2 Announce Type: replace
Abstract: We present a simple Landau theory of plastic-to-crystal phase transitions in which the key components are a multipole-moment order parameter that describes the orientational ordering of the constituent molecules, coupling between such order parameter and elastic strains, and the thermal expansion of the solid. We illustrate the theory with the simplest non-trivial model in which the orientational ordering is described by a quadrupole moment, and use such model to calculate barocaloric effects in plastic crystals that are driven by hydrostatic pressure. The model captures main features of plastic-to-crystal phase transitions, namely the large volume and entropy changes at the transition, as well as the linear dependence of the transition temperature with pressure. We quantify the temperature regions in the barocaloric response associated with the individual plastic and crystal phases, and those involving the phase transition. Our model is in overall agreement with previous experiments in powdered samples of fullerite C$_{60}$, and predicts peak isothermal entropy changes of $\sim90 \,{\rm J K^{-1} kg^{-1}}$ and peak adiabatic temperature changes of $\sim35 \,{\rm K}$ using $0.60\,$GPa at $265\,$K in fullerite single crystals.

Click here to read this post out
ID: 807934; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: