×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18874v1 Announce Type: new
Abstract: Community search has been extensively studied in the past decades. In recent years, there is a growing interest in attributed community search that aims to identify a community based on both the query nodes and query attributes. A set of techniques have been investigated. Though the recent methods based on advanced learning models such as graph neural networks (GNNs) can achieve state-of-the-art performance in terms of accuracy, we notice that 1) they suffer from severe efficiency issues; 2) they directly model community search as a node classification problem and thus cannot make good use of interdependence among different entities in the graph. Motivated by these, in this paper, we propose a new neurAL attrIbuted Community sEarch model for large-scale graphs, termed ALICE. ALICE first extracts a candidate subgraph to reduce the search scope and subsequently predicts the community by the Consistency-aware Net , termed ConNet. Specifically, in the extraction phase, we introduce the density sketch modularity that uses a unified form to combine the strengths of two existing powerful modularities, i.e., classical modularity and density modularity. Based on the new modularity metric, we first adaptively obtain the candidate subgraph, formed by the k-hop neighbors of the query nodes, with the maximum modularity. Then, we construct a node-attribute bipartite graph to take attributes into consideration. After that, ConNet adopts a cross-attention encoder to encode the interaction between the query and the graph. The training of the model is guided by the structure-attribute consistency and the local consistency to achieve better performance. Extensive experiments over 11 real-world datasets including one billion-scale graph demonstrate the superiority of ALICE in terms of accuracy, efficiency, and scalability.

Click here to read this post out
ID: 807997; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: