×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19181v1 Announce Type: new
Abstract: The evolution of Large Language Models (LLMs) has significantly enhanced capabilities across various fields, leading to a paradigm shift in how Recommender Systems (RSs) are conceptualized and developed. However, existing research primarily focuses on point-wise and pair-wise recommendation paradigms. These approaches prove inefficient in LLM-based recommenders due to the high computational cost of utilizing Large Language Models. While some studies have delved into list-wise approaches, they fall short in ranking tasks. This shortfall is attributed to the misalignment between the objectives of ranking and language generation. To this end, this paper introduces the Language Model Framework with Aligned Listwise Ranking Objectives (ALRO). ALRO is designed to bridge the gap between the capabilities of LLMs and the nuanced requirements of ranking tasks within recommender systems. A key feature of ALRO is the introduction of soft lambda loss, an adaptation of lambda loss tailored to suit language generation tasks. Additionally, ALRO incorporates a permutation-sensitive learning mechanism that addresses position bias, a prevalent issue in generative models, without imposing additional computational burdens during inference. Our evaluative studies reveal that ALRO outperforms existing embedding-based recommendation methods and the existing LLM-based recommendation baselines, highlighting its efficacy.

Click here to read this post out
ID: 808146; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: