×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19211v1 Announce Type: new
Abstract: Recently, foundation models, particularly large language models (LLMs), have demonstrated an impressive ability to adapt to various tasks by fine-tuning large amounts of instruction data. Notably, federated foundation models emerge as a privacy preservation method to fine-tune models collaboratively under federated learning (FL) settings by leveraging many distributed datasets with non-IID data. To alleviate communication and computation overhead, parameter-efficient methods are introduced for efficiency, and some research adapted personalization methods to federated foundation models for better user preferences alignment. However, a critical gap in existing research is the neglect of test-time distribution shifts in real-world applications. Therefore, to bridge this gap, we propose a new setting, termed test-time personalization, which not only concentrates on the targeted local task but also extends to other tasks that exhibit test-time distribution shifts. To address challenges in this new setting, we explore a simple yet effective solution to learn a comprehensive foundation model. Specifically, a dual-personalizing adapter architecture (FedDPA) is proposed, comprising a global adapter and a local adapter for addressing test-time distribution shifts and personalization, respectively. Additionally, we introduce an instance-wise dynamic weighting mechanism to optimize the balance between the global and local adapters, enhancing overall performance. The effectiveness of the proposed method has been evaluated on benchmark datasets across different NLP tasks.

Click here to read this post out
ID: 808156; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: