×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19218v1 Announce Type: new
Abstract: Various traditional numerical methods for solving initial value problems of differential equations often produce local solutions near the initial value point, despite the problems having larger interval solutions. Even current popular neural network algorithms or deep learning methods cannot guarantee yielding large interval solutions for these problems. In this paper, we propose a piecewise neural network approach to obtain a large interval numerical solution for initial value problems of differential equations. In this method, we first divide the solution interval, on which the initial problem is to be solved, into several smaller intervals. Neural networks with a unified structure are then employed on each sub-interval to solve the related sub-problems. By assembling these neural network solutions, a piecewise expression of the large interval solution to the problem is constructed, referred to as the piecewise neural network solution. The continuous differentiability of the solution over the entire interval, except for finite points, is proven through theoretical analysis and employing a parameter transfer technique. Additionally, a parameter transfer and multiple rounds of pre-training technique are utilized to enhance the accuracy of the approximation solution. Compared with existing neural network algorithms, this method does not increase the network size and training data scale for training the network on each sub-domain. Finally, several numerical experiments are presented to demonstrate the efficiency of the proposed algorithm.

Click here to read this post out
ID: 808159; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: