×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19225v1 Announce Type: new
Abstract: Weakly-supervised action segmentation is a task of learning to partition a long video into several action segments, where training videos are only accompanied by transcripts (ordered list of actions). Most of existing methods need to infer pseudo segmentation for training by serial alignment between all frames and the transcript, which is time-consuming and hard to be parallelized while training. In this work, we aim to escape from this inefficient alignment with massive but redundant frames, and instead to directly localize a few action transitions for pseudo segmentation generation, where a transition refers to the change from an action segment to its next adjacent one in the transcript. As the true transitions are submerged in noisy boundaries due to intra-segment visual variation, we propose a novel Action-Transition-Aware Boundary Alignment (ATBA) framework to efficiently and effectively filter out noisy boundaries and detect transitions. In addition, to boost the semantic learning in the case that noise is inevitably present in the pseudo segmentation, we also introduce video-level losses to utilize the trusted video-level supervision. Extensive experiments show the effectiveness of our approach on both performance and training speed.

Click here to read this post out
ID: 808165; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: