×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19444v1 Announce Type: new
Abstract: The rapidly advancing field of Explainable Artificial Intelligence (XAI) aims to tackle the issue of trust regarding the use of complex black-box deep learning models in real-world applications. Existing post-hoc XAI techniques have recently been shown to have poor performance on medical data, producing unreliable explanations which are infeasible for clinical use. To address this, we propose an ante-hoc approach based on concept bottleneck models which introduces for the first time clinical concepts into the classification pipeline, allowing the user valuable insight into the decision-making process. On a large public dataset of chest X-rays and associated medical reports, we focus on the binary classification task of lung cancer detection. Our approach yields improved classification performance in lung cancer detection when compared to baseline deep learning models (F1 > 0.9), while also generating clinically relevant and more reliable explanations than existing techniques. We evaluate our approach against post-hoc image XAI techniques LIME and SHAP, as well as CXR-LLaVA, a recent textual XAI tool which operates in the context of question answering on chest X-rays.

Click here to read this post out
ID: 808270; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: