×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2307.02192v3 Announce Type: replace
Abstract: This paper presents the FormAI dataset, a large collection of 112, 000 AI-generated compilable and independent C programs with vulnerability classification. We introduce a dynamic zero-shot prompting technique constructed to spawn diverse programs utilizing Large Language Models (LLMs). The dataset is generated by GPT-3.5-turbo and comprises programs with varying levels of complexity. Some programs handle complicated tasks like network management, table games, or encryption, while others deal with simpler tasks like string manipulation. Every program is labeled with the vulnerabilities found within the source code, indicating the type, line number, and vulnerable function name. This is accomplished by employing a formal verification method using the Efficient SMT-based Bounded Model Checker (ESBMC), which uses model checking, abstract interpretation, constraint programming, and satisfiability modulo theories to reason over safety/security properties in programs. This approach definitively detects vulnerabilities and offers a formal model known as a counterexample, thus eliminating the possibility of generating false positive reports. We have associated the identified vulnerabilities with Common Weakness Enumeration (CWE) numbers. We make the source code available for the 112, 000 programs, accompanied by a separate file containing the vulnerabilities detected in each program, making the dataset ideal for training LLMs and machine learning algorithms. Our study unveiled that according to ESBMC, 51.24% of the programs generated by GPT-3.5 contained vulnerabilities, thereby presenting considerable risks to software safety and security.

Click here to read this post out
ID: 808454; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: