×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2309.01898v2 Announce Type: replace
Abstract: Legged robots exhibit significant potential across diverse applications, including but not limited to hazardous environment search and rescue missions and the exploration of unexplored regions both on Earth and in outer space. However, the successful navigation of these robots in dynamic environments heavily hinges on the implementation of efficient collision avoidance techniques. In this research paper, we employ Collision Cone Control Barrier Functions (C3BF) to ensure the secure movement of legged robots within environments featuring a wide array of static and dynamic obstacles. We introduce the Quadratic Program (QP) formulation of C3BF, referred to as C3BF-QP, which serves as a protective filter layer atop a reference controller to ensure the robots' safety during operation. The effectiveness of this approach is illustrated through simulations conducted on PyBullet.

Click here to read this post out
ID: 808464; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: