×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2402.17058v2 Announce Type: replace
Abstract: This manuscript investigates the information-theoretic limits of integrated sensing and communications (ISAC), aiming for simultaneous reliable communication and precise channel state estimation. We model such a system with a state-dependent discrete memoryless channel (SD-DMC) with present or absent channel feedback and generalized side information at the transmitter and the receiver, where the joint task of message decoding and state estimation is performed at the receiver. The relationship between the achievable communication rate and estimation error, the capacity-distortion (C-D) trade-off, is characterized across different causality levels of the side information. This framework is shown to be capable of modeling various practical scenarios by assigning the side information with different meanings, including monostatic and bistatic radar systems. The analysis is then extended to the two-user degraded broadcast channel, and we derive an achievable C-D region that is tight under certain conditions. To solve the optimization problem arising in the computation of C-D functions/regions, we propose a proximal block coordinate descent (BCD) method, prove its convergence to a stationary point, and derive a stopping criterion. Finally, several representative examples are studied to demonstrate the versatility of our framework and the effectiveness of the proposed algorithm.

Click here to read this post out
ID: 808562; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: