×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18479v2 Announce Type: replace
Abstract: Graph neural networks (GNNs) are currently one of the most performant collaborative filtering methods. Meanwhile, owing to the use of an embedding table to represent each user/item as a distinct vector, GNN-based recommenders have inherited the long-standing defect of parameter inefficiency. As a common practice for scalable embeddings, parameter sharing enables the use of fewer embedding vectors (i.e., meta-embeddings). When assigning meta-embeddings, most existing methods are a heuristically designed, predefined mapping from each user's/item's ID to the corresponding meta-embedding indexes, thus simplifying the optimization problem into learning only the meta-embeddings. However, in the context of GNN-based collaborative filtering, such a fixed mapping omits the semantic correlations between entities that are evident in the user-item interaction graph, leading to suboptimal recommendation performance. To this end, we propose Lightweight Embeddings for Graph Collaborative Filtering (LEGCF), a parameter-efficient embedding framework dedicated to GNN-based recommenders. LEGCF innovatively introduces an assignment matrix as an extra learnable component on top of meta-embeddings. To jointly optimize these two heavily entangled components, aside from learning the meta-embeddings by minimizing the recommendation loss, LEGCF further performs efficient assignment update by enforcing a novel semantic similarity constraint and finding its closed-form solution based on matrix pseudo-inverse. The meta-embeddings and assignment matrix are alternately updated, where the latter is sparsified on the fly to ensure negligible storage overhead. Extensive experiments on three benchmark datasets have verified LEGCF's smallest trade-off between size and performance, with consistent accuracy gain over state-of-the-art baselines. The codebase of LEGCF is available in https://github.com/xurong-liang/LEGCF.

Click here to read this post out
ID: 808625; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: