×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2307.05352v2 Announce Type: replace-cross
Abstract: In this manuscript, we propose to use a variational autoencoder-based framework for parameterizing a conditional linear minimum mean squared error estimator. The variational autoencoder models the underlying unknown data distribution as conditionally Gaussian, yielding the conditional first and second moments of the estimand, given a noisy observation. The derived estimator is shown to approximate the minimum mean squared error estimator by utilizing the variational autoencoder as a generative prior for the estimation problem. We propose three estimator variants that differ in their access to ground-truth data during the training and estimation phases. The proposed estimator variant trained solely on noisy observations is particularly noteworthy as it does not require access to ground-truth data during training or estimation. We conduct a rigorous analysis by bounding the difference between the proposed and the minimum mean squared error estimator, connecting the training objective and the resulting estimation performance. Furthermore, the resulting bound reveals that the proposed estimator entails a bias-variance tradeoff, which is well-known in the estimation literature. As an example application, we portray channel estimation, allowing for a structured covariance matrix parameterization and low-complexity implementation. Nevertheless, the proposed framework is not limited to channel estimation but can be applied to a broad class of estimation problems. Extensive numerical simulations first validate the theoretical analysis of the proposed variational autoencoder-based estimators and then demonstrate excellent estimation performance compared to related classical and machine learning-based state-of-the-art estimators.

Click here to read this post out
ID: 808645; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 17
CC:
No creative common's license
Comments: