×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18878v1 Announce Type: cross
Abstract: Imposing key anatomical features, such as the number of organs, their shapes, sizes, and relative positions, is crucial for building a robust multi-organ segmentation model. Current attempts to incorporate anatomical features include broadening effective receptive fields (ERF) size with resource- and data-intensive modules such as self-attention or introducing organ-specific topology regularizers, which may not scale to multi-organ segmentation problems where inter-organ relation also plays a huge role. We introduce a new approach to impose anatomical constraints on any existing encoder-decoder segmentation model by conditioning model prediction with learnable anatomy prior. More specifically, given an abdominal scan, a part of the encoder spatially warps a learnable prior to align with the given input scan using thin plate spline (TPS) grid interpolation. The warped prior is then integrated during the decoding phase to guide the model for more anatomy-informed predictions. Code is available at \hyperlink{https://anonymous.4open.science/r/AIC-UNet-7048}{https://anonymous.4open.science/r/AIC-UNet-7048}.

Click here to read this post out
ID: 808704; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 21
CC:
No creative common's license
Comments: