×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18908v1 Announce Type: cross
Abstract: Multiple object tracking (MOT), a key task in image recognition, presents a persistent challenge in balancing processing speed and tracking accuracy. This study introduces a novel approach that leverages quantum annealing (QA) to expedite computation speed, while enhancing tracking accuracy through the ensembling of object tracking processes. A method to improve the matching integration process is also proposed. By utilizing the sequential nature of MOT, this study further augments the tracking method via reverse annealing (RA). Experimental validation confirms the maintenance of high accuracy with an annealing time of a mere 3 $\mu$s per tracking process. The proposed method holds significant potential for real-time MOT applications, including traffic flow measurement for urban traffic light control, collision prediction for autonomous robots and vehicles, and management of products mass-produced in factories.

Click here to read this post out
ID: 808705; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 19
CC:
No creative common's license
Comments: