×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19158v1 Announce Type: cross
Abstract: Deep learning-based video compression is a challenging task, and many previous state-of-the-art learning-based video codecs use optical flows to exploit the temporal correlation between successive frames and then compress the residual error. Although these two-stage models are end-to-end optimized, the epistemic uncertainty in the motion estimation and the aleatoric uncertainty from the quantization operation lead to errors in the intermediate representations and introduce artifacts in the reconstructed frames. This inherent flaw limits the potential for higher bit rate savings. To address this issue, we propose an uncertainty-aware video compression model that can effectively capture the predictive uncertainty with deep ensembles. Additionally, we introduce an ensemble-aware loss to encourage the diversity among ensemble members and investigate the benefits of incorporating adversarial training in the video compression task. Experimental results on 1080p sequences show that our model can effectively save bits by more than 20% compared to DVC Pro.

Click here to read this post out
ID: 808717; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: