×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19185v1 Announce Type: cross
Abstract: Channel state information (CSI) feedback is critical for achieving the promised advantages of enhancing spectral and energy efficiencies in massive multiple-input multiple-output (MIMO) wireless communication systems. Deep learning (DL)-based methods have been proven effective in reducing the required signaling overhead for CSI feedback. In practical dual-polarized MIMO scenarios, channels in the vertical and horizontal polarization directions tend to exhibit high polarization correlation. To fully exploit the inherent propagation similarity within dual-polarized channels, we propose a disentangled representation neural network (NN) for CSI feedback, referred to as DiReNet. The proposed DiReNet disentangles dual-polarized CSI into three components: polarization-shared information, vertical polarization-specific information, and horizontal polarization-specific information. This disentanglement of dual-polarized CSI enables the minimization of information redundancy caused by the polarization correlation and improves the performance of CSI compression and recovery. Additionally, flexible quantization and network extension schemes are designed. Consequently, our method provides a pragmatic solution for CSI feedback to harness the physical MIMO polarization as a priori information. Our experimental results show that the performance of our proposed DiReNet surpasses that of existing DL-based networks, while also effectively reducing the number of network parameters by nearly one third.

Click here to read this post out
ID: 808718; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: