×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19200v1 Announce Type: cross
Abstract: Perceptive mobile networks implement sensing and communication by reusing existing cellular infrastructure. Cell-free multiple-input multiple-output, thanks to the cooperation among distributed access points, supports the deployment of multistatic radar sensing, while providing high spectral efficiency for data communication services. To this end, the distributed access points communicate over fronthaul links with a central processing unit acting as a cloud processor. This work explores four different types of PMN uplink solutions based on Cell-free multiple-input multiple-output, in which the sensing and decoding functionalities are carried out at either cloud or edge. Accordingly, we investigate and compare joint cloud-based decoding and sensing (CDCS), hybrid cloud-based decoding and edge-based sensing (CDES), hybrid edge-based decoding and cloud-based sensing (EDCS) and edge-based decoding and sensing (EDES). In all cases, we target a unified design problem formulation whereby the fronthaul quantization of signals received in the training and data phases are jointly designed to maximize the achievable rate under sensing requirements and fronthaul capacity constraints. Via numerical results, the four implementation scenarios are compared as a function of the available fronthaul resources by highlighting the relative merits of edge- and cloud-based sensing and communications. This study provides guidelines on the optimal functional allocation in fronthaul-constrained networks implementing integrated sensing and communications.

Click here to read this post out
ID: 808719; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: