×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19293v1 Announce Type: cross
Abstract: This paper presents a method for dynamic adjustment of cable preloads based on the actuation redundancy of \acp{CDPR}, which allows increasing or decreasing the platform stiffness depending on task requirements. This is achieved by computing preload parameters with an extended nullspace formulation of the kinematics. The method facilitates the operator's ability to specify a defined preload within the operation space. The algorithms are implemented in a real-time environment, allowing for the use of optimization in hybrid position-force control. To validate the effectiveness of this approach, a simulation study is performed, and the obtained results are compared to existing methods. Furthermore, the method is investigated experimentally and compared with the conventional position-controlled operation of a cable robot. The results demonstrate the feasibility of adaptively adjusting cable preloads during platform motion and manipulation of additional objects.

Click here to read this post out
ID: 808723; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 15
CC:
No creative common's license
Comments: