×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19441v1 Announce Type: cross
Abstract: Post-traumatic stress disorder (PTSD) is a mental disorder that can be developed after witnessing or experiencing extremely traumatic events. PTSD can affect anyone, regardless of ethnicity, or culture. An estimated one in every eleven people will experience PTSD during their lifetime. The Clinician-Administered PTSD Scale (CAPS) and the PTSD Check List for Civilians (PCL-C) interviews are gold standards in the diagnosis of PTSD. These questionnaires can be fooled by the subject's responses. This work proposes a deep learning-based approach that achieves state-of-the-art performances for PTSD detection using audio recordings during clinical interviews. Our approach is based on MFCC low-level features extracted from audio recordings of clinical interviews, followed by deep high-level learning using a Stochastic Transformer. Our proposed approach achieves state-of-the-art performances with an RMSE of 2.92 on the eDAIC dataset thanks to the stochastic depth, stochastic deep learning layers, and stochastic activation function.

Click here to read this post out
ID: 808727; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 16
CC:
No creative common's license
Comments: