×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2305.19507v3 Announce Type: replace-cross
Abstract: Generative Adversarial Networks (GANs) have shown notable accomplishments in remote sensing domain. However, this paper reveals that their performance on remote sensing images falls short when compared to their impressive results with natural images. This study identifies a previously overlooked issue: GANs exhibit a heightened susceptibility to overfitting on remote sensing images.To address this challenge, this paper analyzes the characteristics of remote sensing images and proposes manifold constraint regularization, a novel approach that tackles overfitting of GANs on remote sensing images for the first time. Our method includes a new measure for evaluating the structure of the data manifold. Leveraging this measure, we propose the manifold constraint regularization term, which not only alleviates the overfitting problem, but also promotes alignment between the generated and real data manifolds, leading to enhanced quality in the generated images. The effectiveness and versatility of this method have been corroborated through extensive validation on various remote sensing datasets and GAN models. The proposed method not only enhances the quality of the generated images, reflected in a 3.13\% improvement in Frechet Inception Distance (FID) score, but also boosts the performance of the GANs on downstream tasks, evidenced by a 3.76\% increase in classification accuracy.

Click here to read this post out
ID: 808759; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: