×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2309.11076v2 Announce Type: replace-cross
Abstract: In this paper, we address the challenge of deriving dynamical models from sparse and noisy data. High-quality data is crucial for symbolic regression algorithms; limited and noisy data can present modeling challenges. To overcome this, we combine Gaussian process regression with a sparse identification of nonlinear dynamics (SINDy) method to denoise the data and identify nonlinear dynamical equations. Our simple approach offers improved robustness with sparse, noisy data compared to SINDy alone. We demonstrate its effectiveness on a Lotka-Volterra model, a unicycle dynamic model in simulation, and hardware data from an NVIDIA JetRacer system. We show superior performance over baselines including 20.78% improvement over SINDy and 61.92% improvement over SSR in predicting future trajectories from discovered dynamics.

Click here to read this post out
ID: 808764; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: