×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2307.10391v2 Announce Type: replace-cross
Abstract: We match scattering amplitudes in point particle effective field theory (EFT) and general relativity to extract low frequency dynamical tidal responses of rotating (Kerr) black holes to all orders in spin. In the conservative sector, we study local worldline couplings that correspond to the time-derivative expansion of the black hole tidal response function. These are dynamical (frequency-dependent) generalizations of the static Love numbers. We identify and extract couplings of three types of subleading local worldline operators: the curvature time derivative terms, the spin - curvature time derivative couplings, and quadrupole - octupole mixing operators that arise due to the violation of spherical symmetry. The first two subleading couplings are non-zero and exhibit a classical renormalization group running; we explicitly present their scheme-independent beta functions. The conservative mixing terms, however, vanish as a consequence of vanishing static Love numbers. In the non-conservative sector, we match the dissipation numbers at next-to-leading and next-to-next-to leading orders in frequency. In passing, we identify terms in the general relativity absorption probabilities that originate from tails and short-scale logarithmic corrections to the lowest order dissipation contributions.

Click here to read this post out
ID: 808808; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: