×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19440v1 Announce Type: new
Abstract: We point out that the Gaussian wave-packet formalism can serve as a concrete realization of the joint measurement of position and momentum, which is an essential element in understanding Heisenberg's original philosophy of the uncertainty principle, in line with the universal framework of error, disturbance, and their uncertainty relations developed by Lee and Tsutsui. We show that our joint measurement in the Gaussian phase space, being a Positive Operator-Valued Measure (POVM) measurement, smoothly interpolates between the projective measurements of position and momentum. We, for the first time, have obtained the Lee-Tsutsui (LT) error and the refined Lee error for the position-momentum measurement. We find that the LT uncertainty relation becomes trivial, $0=0$, in the limiting case of projective measurement of either position or momentum. Remarkably, in contrast to the LT relation, the refined Lee uncertainty relation, which assesses errors for local representability, provides a constant lower bound unaffected by these limits and is invariably saturated, for a pure Gaussian initial state. The obtained lower bound is in agreement with Heisenberg's value.

Click here to read this post out
ID: 808851; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: