×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18914v1 Announce Type: new
Abstract: We build a covariant holographic entanglement entropy prescription for a class of closed FRW cosmologies, generalizing a recent holographic proposal in de Sitter space. Starting from the Bousso covariant entropy bound, we describe the location of two holographic screens associated with a pair of antipodal observers, and then state our holographic proposal. We then apply our prescription to compute the entanglement entropy of the two-screen and the single screen systems, focusing on the leading classical contributions of order $(G\hbar)^{-1}$. First, we show how the full spacetime is expected to be holographically encoded on the two screens. Second, we argue that the exterior region between the two screens behaves as an Einstein-Rosen bridge, arising from the entanglement between the holographic degrees of freedom as suggested by the ER=EPR conjecture. The entanglement between the two screens, or from the geometric point of view the area of the minimal extremal surface, varies during the cosmological evolution, hence entailing a time-dependent ER=EPR realization.

Click here to read this post out
ID: 808895; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: