×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:1905.02409v3 Announce Type: replace
Abstract: We take new algebraic and geometric perspectives on the combinatorial results recently obtained on the partition functions of critical massive gravities conjectured to be dual to Logarithmic CFTs throught the AdS$_3$/LCFT$_2$ correspondence. We show that the partition functions of logarithmic states can be expressed in terms of Schur polynomials. Subsequently, we show that the moduli space of the logarithmic states is the symmetric product $S^n \left( \mathbb{C}^2 \right)$. As the quotient of an affine space by the symmetric group, this orbifold space is shown to be described by Hilbert series that have palindromic numerators. The palindromic properties of the Hilbert series indicate that the orbifolds are Calabi-Yau, and allow for a new interpretation of the logarithmic state spaces in critical massive gravities as Calabi-Yau singular spaces.

Click here to read this post out
ID: 808919; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 16
CC:
No creative common's license
Comments: