×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19286v1 Announce Type: new
Abstract: In isogeometric analysis, isogeometric function spaces are employed for accurately representing the solution to a partial differential equation (PDE) on a parameterized domain. They are generated from a tensor-product spline space by composing the basis functions with the inverse of the parameterization. Depending on the geometry of the domain and on the data of the PDE, the solution might not have maximum Sobolev regularity, leading to a reduced convergence rate. In this case it is necessary to reduce the local mesh size close to the singularities. The classical approach is to perform adaptive h-refinement, which either leads to an unnecessarily large number of degrees of freedom or to a spline space that does not possess a tensor-product structure. Based on the concept of r-adaptivity we present a novel approach for finding a suitable isogeometric function space for a given PDE without sacrificing the tensor-product structure of the underlying spline space. In particular, we use the fact that different reparameterizations of the same computational domain lead to different isogeometric function spaces while preserving the geometry. Starting from a multi-patch domain consisting of bilinearly parameterized patches, we aim to find the biquadratic multi-patch parameterization that leads to the isogeometric function space with the smallest best approximation error of the solution. In order to estimate the location of the optimal control points, we employ a trained residual neural network that is applied to the graph surfaces of the approximated solution and its derivatives. In our experimental results, we observe that our new method results in a vast improvement of the approximation error for different PDE problems on multi-patch domains.

Click here to read this post out
ID: 809041; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 20
CC:
No creative common's license
Comments: