×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.19298v1 Announce Type: new
Abstract: In this paper, we present a unified nonequilibrium model of continuum mechanics for compressible multiphase flows. The model, which is formulated within the framework of Symmetric Hyperbolic Thermodynamically Compatible (SHTC) equations, can describe the arbitrary number of phases that can be heat-conducting inviscid and viscous fluids}, as well as elastoplastic solids. The phases are allowed to have different velocities, pressures, temperatures, and shear stresses, while the material interfaces are treated as diffuse interfaces with the volume fraction playing the role of the interface field. To relate our model to other multiphase approaches, we reformulate the SHTC governing equations in terms of the phase state parameters and put them in the form of Baer-Nunziato-type models. It is the Baer-Nunziato form of the SHTC equations which is then solved numerically using a robust second-order path-conservative MUSCL-Hancock finite volume method on Cartesian meshes. Due to the fact that the obtained governing equations are very challenging, we restrict our numerical examples to a simplified version of the model, focusing on the isentropic limit for three-phase mixtures. To address the stiffness properties of the relaxation source terms present in the model, the implemented scheme incorporates a semi-analytical time integration method specifically designed for the non-linear stiff source terms governing the strain relaxation. The validation process involves a wide range of benchmarks and several applications for compressible multiphase problems. Notably, results are presented for multiphase flows in all the relaxation limit cases of the model, including inviscid and viscous Newtonian fluids, as well as non-linear hyperelastic and elastoplastic solids.

Click here to read this post out
ID: 809043; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 26
CC:
No creative common's license
Comments: