×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2309.00475v2 Announce Type: replace
Abstract: In this paper we study the satisfiability and solutions of group equations when combinatorial, algebraic and language-theoretic constraints are imposed on the solutions. We show that the solutions to equations with length, lexicographic order, abelianisation or context-free constraints added, can be effectively produced in finitely generated virtually abelian groups. Crucially, we translate each of the constraints above into a rational set in an effective way, and so reduce each problem to solving equations with rational constraints, which is decidable and well understood in virtually abelian groups. A byproduct of our results is that the growth series of a virtually abelian group, with respect to any generating set and any weight, is effectively computable. This series is known to be rational by a result of Benson, but his proof is non-constructive.

Click here to read this post out
ID: 809196; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 15
CC:
No creative common's license
Comments: