×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2401.08030v2 Announce Type: replace-cross
Abstract: In engineering crystal plasticity inelastic mechanisms correspond to tensorial zero-energy valleys in the space of macroscopic strains. The flat nature of such valleys is in contradiction with the fact that plastic slips, mimicking lattice-invariant shears, are inherently discrete. A reconciliation has recently been achieved in the mesoscopic tensorial model (MTM) of crystal plasticity, which introduces periodically modulated energy valleys while also capturing in a geometrically exact way the crystallographically-specific aspects of plastic slips. In this paper, we extend the MTM framework, which in its original form had the appearance of a discretized nonlinear elasticity theory, by explicitly introducing the concept of plastic deformation. The ensuing model contains a novel matrix-valued spin variable, representing the quantized plastic distortion, whose rate-independent evolution can be described by a discrete (quasi-)automaton. The proposed reformulation of the MTM leads to a considerable computational speedup associated with the use of a robust and efficient hybrid Gauss-Newton--Cauchy energy minimization algorithm. To illustrate the effectiveness of the new approach, we present a detailed case-study focusing on the aspects of crystal plasticity that are beyond reach for the classical continuum theory. Thus, we provide compelling evidence that the re-formulated MTM is fully adequate to deal with the intermittency of plastic response under quasi-static loading. In particular, our numerical experiments show that the statistics of dislocational avalanches, associated with plastic yield in 2D square crystals, exhibits a power-law tail with a critical exponent matching the value predicted by general theoretical considerations and also independently observed in discrete-dislocation-dynamics (DDD) simulations.

Click here to read this post out
ID: 809414; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 20
CC:
No creative common's license
Comments: