×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.18900v1 Announce Type: new
Abstract: Non-Clifford gates are frequently exclusively implemented on fault-tolerant architectures by first distilling magic states in specialised magic-state factories. In the rest of the architecture, the computational space, magic states can then be consumed by a stabilizer circuit to implement non-Clifford operations. We show that the connectivity between the computational space and magic state factories forms a fundamental bottleneck on the rate at which non-Clifford operations can be implemented. We show that the nullity of the magic state, $\nu(|D\rangle)$ for diagonal gate $D$, characterizes the non-local resources required to implement $D$ in the computational space. As part of our proof, we construct local stabilizer circuits that use only $\nu(|D\rangle)$ ebits to implement $D$ in the computational space that may be useful to reduce the non-local resources required to inject non-Clifford gates. Another consequence is that the edge-disjoint path compilation algorithm [arXiv:2110.11493] produces minimum-depth circuits for implementing single-qubit diagonal gates.

Click here to read this post out
ID: 809466; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 15
CC:
No creative common's license
Comments: