×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2303.06133v3 Announce Type: replace
Abstract: Due to low numbers of qubits and their error-proneness, Noisy Intermediate-Scale Quantum (NISQ) computers impose constraints on the size of quantum algorithms they can successfully execute. State-of-the-art research introduces various techniques addressing these limitations by utilizing known or inexpensively generated approximations, solutions, or models as a starting point to approach a task instead of starting from scratch. These so-called warm-starting techniques aim to reduce quantum resource consumption, thus facilitating the design of algorithms suiting the capabilities of NISQ computers. In this work, we collect and analyze scientific literature on warm-starting techniques in the quantum computing domain. In particular, we (i) create a systematic map of state-of-the-art research on warm-starting techniques using established guidelines for systematic mapping studies, (ii) identify relevant properties of such techniques, and (iii) based on these properties classify the techniques identified in the literature in an extensible classification scheme. Our results provide insights into the research field and aim to help quantum software engineers to categorize warm-starting techniques and apply them in practice. Moreover, our contributions may serve as a starting point for further research on the warm-starting topic since they provide an overview of existing work and facilitate the identification of research gaps.

Click here to read this post out
ID: 809507; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: March 29, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 21
CC:
No creative common's license
Comments: